Heterologous Complementation Studies With the YscX and YscY Protein Families Reveals a Specificity for Yersinia pseudotuberculosis Type III Secretion

نویسندگان

  • Jyoti M. Gurung
  • Ayad A. A. Amer
  • Monika K. Francis
  • Tiago R. D. Costa
  • Shiyun Chen
  • Anton V. Zavialov
  • Matthew S. Francis
چکیده

Type III secretion systems harbored by several Gram-negative bacteria are often used to deliver host-modulating effectors into infected eukaryotic cells. About 20 core proteins are needed for assembly of a secretion apparatus. Several of these proteins are genetically and functionally conserved in type III secretion systems of bacteria associated with invertebrate or vertebrate hosts. In the Ysc family of type III secretion systems are two poorly characterized protein families, the YscX family and the YscY family. In the plasmid-encoded Ysc-Yop type III secretion system of human pathogenic Yersinia species, YscX is a secreted substrate while YscY is its non-secreted cognate chaperone. Critically, neither an yscX nor yscY null mutant of Yersinia is capable of type III secretion. In this study, we show that the genetic equivalents of these proteins produced as components of other type III secretion systems of Pseudomonas aeruginosa (PscX and PscY), Aeromonas species (AscX and AscY), Vibrio species (VscX and VscY), and Photorhabdus luminescens (SctX and SctY) all possess an ability to interact with its native cognate partner and also establish cross-reciprocal binding to non-cognate partners as judged by a yeast two-hybrid assay. Moreover, a yeast three-hybrid assay also revealed that these heterodimeric complexes could maintain an interaction with YscV family members, a core membrane component of all type III secretion systems. Despite maintaining these molecular interactions, only expression of the native yscX in the near full-length yscX deletion and native yscY in the near full-length yscY deletion were able to complement for their general substrate secretion defects. Hence, YscX and YscY must have co-evolved to confer an important function specifically critical for Yersinia type III secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Yersinia pestis YscY protein directly binds YscX, a secreted component of the type III secretion machinery.

Human pathogenic yersiniae organisms export and translocate the Yop virulence proteins and V antigen upon contact with a eukaryotic cell. Yersinia pestis mutants defective for production of YscX or YscY were unable to export the Yops and V antigen. YscX and YscY were both present in the Y. pestis cell pellet fraction; however, YscX was also found in the culture supernatant. YscY showed structur...

متن کامل

Identification of SycN, YscX, and YscY, three new elements of the Yersinia yop virulon.

The Yop virulon allows Yersinia spp. to resist the immune response of the host by injecting harmful proteins into host cells. We identified three new elements of the Yop virulon: SycN, required for normal secretion of YopN, and YscX and YscY, two new components of the secretion machinery.

متن کامل

The adhesive protein invasin of Yersinia pseudotuberculosis induces neutrophil extracellular traps via β1 integrins.

Yersinia pseudotuberculosis adhesive protein invasin is crucial for the bacteria to cross the intestine epithelium by binding to β1 integrins on M-cells and gaining access to the underlying tissues. After the crossing invasin can bind to β1 integrins on other cell surfaces, however effector proteins delivered by the type III secretion system Y. pseudotuberculosis efficiently inhibit potential i...

متن کامل

A type III secretion system inhibitor targets YopD while revealing differential regulation of secretion in calcium-blind mutants of Yersinia pestis.

Numerous Gram-negative pathogens rely upon type III secretion (T3S) systems to cause disease. Several small-molecule inhibitors of the type III secretion systems have been identified; however, few targets of these inhibitors have been elucidated. Here we report that 2,2'-thiobis-(4-methylphenol) (compound D), inhibits type III secretion in Yersinia pestis, Yersinia pseudotuberculosis, and Pseud...

متن کامل

Extracytoplasmic-stress-responsive pathways modulate type III secretion in Yersinia pseudotuberculosis.

Three signal transduction pathways, the two-component systems CpxRA and BaeSR and the alternative sigma factor sigma(E), respond to extracytoplasmic stress that facilitates bacterial adaptation to changing environments. At least the CpxRA and sigma(E) pathways control the production of protein-folding and degradation factors that counter the effects of protein misfolding in the periplasm. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018